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ABSTRACT We sought to determine whether fish-oil sup-
plementation would suppress blastogenesis in vitro of conca-
navalin A (ConA)-stimulated peripheral blood mononuclear
cells (PBMCs) and, if so, whether it could be reversed with in-
creased intake of vitamin E. Healthy males ate a controlled basal
diet providing a total of 40% of energy from fat when fed in
conjunction with 15 g/d of either placebo oil (PO) or fish-oil
concentrate (FOC) fortified with 15 mg a-tocopherol/d for three
periods. The subjects were supplemented with PO for 10 wk
(PO, with FOC for 10 wk (FOC), and with FOC plus an addi-
tional 200 mg a-tocopherol/d for 8 wk (FOC+E). During FOC
supplementation mitogenic responsiveness of PBMCs to ConA
was suppressed, but this effect was reversed by concurrent sup-
plementation with all-rac-a-tocopherol (FOC+E). There was a
significant positive relationship (P < 0.001) between plasma a-
tocopherol concentrations and responsiveness of T lymphocytes
to ConA. Am J Clin Nutr 1991;54:896-902.
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Introduction

In recent years there has been increased interest in the pro-
posed health benefits of dietary supplementation with fish oil
(1). This interest has resulted in numerous reports showing the
effects of n—3 polyunsaturated fatty acids (PUFAs) on health
and disease, including those involving the immune system (1-
7). Reports describing the effects of n—3 PUFA supplementation
on immune functions present mixed results. Studies involving
healthy adults eating normal American diets supplemented with
n—3 PUFAs demonstrated decreased production of interleukin
1 (fL-1) by peripheral blood mononuclear cells (PBMCs) (2, 3),
decreased production of interleukin 2 (IL-2) by T lymphocytes
(3), and decreased blastogenesis of mitogen-stimulated PBMCs
(3, 4). Bjerve et al (5) showed active mitogenic responsiveness
of PBMCs to concanavalin A (ConA) in hospitalized patients
with n—3 fatty acid deficiency but, after 4 wk of supplementation
with n-3 PUFAs from fish oil, this activity was reduced. In
contrast, Payan et al (6) reported increased mitogenic respon-
siveness of purified T lymphocytes [by formation of rosettes
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with sheep red blood cells (SRBCs)] to phytohemagglhutinin
(PHA) from persistent asthmatic patients supplemented with
purified eicosapentaenoic acid (EPA) ethyl ester. Kremer et al
(7) also reported increased mitogenic responsiveness of PBMCs
to ConA from medically treated patients with active rheumatoid
arthritis who were supplemented with fish oil.

The increased need for vitamin E during supplementation
with n—3 PUFAs (8-10) was taken into consideration in the
above studies (3~35). However, these studies (3-5) were not de-
signed to determine the effects of increased intake of vitamin E
on mitogen-induced blastogenesis of PBMCs during n—3 PUFA
supplementation. Corwin and Shloss (11) demonstrated that
mice fed a purified diet containing 8% PUFAs (corn oil) needed
a higher intake of vitamin E for maximum blastogenesis of
ConA-stimulated spleen lymphoid cells than did mice fed 8%
saturated fatty acids (lard or hydrogenated coconut oil). Com-
pared with rats with high stripped-lard intake (10%), rats with
high PUFA intake (10% corn oil) showed reduced plasma vi-
tamin E and mitogenic responsiveness of splenic T lymphocytes
to ConA, which both were only partially corrected by higher-
than-normal intake of vitamin E (200 mg/kg diet) (12).

Given the suppressive effects of n—6 PUFAs on T-lymphocyte
responses (13, 14) and the function of vitamin E as an antioxidant
(15, 16), the purpose of the present study was to determine
whether n—3 PUFA supplementation would suppress mitogenic
responsiveness of PBMCs to ConA in vitro and, if so, whether
the suppression could be reversed by increased intake of dietary
vitamin E.
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Subjects and methods

Subjects

Men who were nonsmokers were recruited from the greater
Beltsville, MD, area for an initial interview to determine eligi-
bility for entry into the study. The subjects were scresned by

:means of dictary and medical questionnaires designed to exclude
those with health problems, such as metabolic disorders; history

f any organic disease; regular use of prescription medications

‘or alcohol; and dietary habits that were not representative of the

neral population.

Those who met the initial selection criteria were examined
r a physician from the Georgetown University School of Med-
ine after having given informed consent according to protocols
proved by the Institutional Review Boards of the Georgetown
niversity, the National Cancer Institute (NCI), and the De-
rtment of Health and Human Services (DHHS). Part of the
edical evaluation before entry consisted of a medical history,
hematologic profile, blood-chemisiry measurements including
lasma a-tocopherol concentrations, and a urinalysis. Those with
dy weights < 90% or > 120% of the 1983 standards for de-
rable weights of the Metropolitan Life Insurance Company
ere excluded from this study (17). Similarly, those with plasma
tocopheral concentrations < 14 or > 26 umol/L were also ex-
uded from the study. Aspirin, aspirin-containing drugs, and
her anti-inflammatory drugs were not permitted during the
udy. Acetaminophen was the only analgesic approved for oc-
sional use in cases of acute need. Antibiotics and other med-
ations taken anytime during the study under the direction of
physician were carefully evaluated for their possible effects on
dy variables. From the initial pool of eligible subjects, 41
re selected for participation in the study; 40 men completed
study. Age, weight, and height were 24-57 y (38.1 + 1.4, X
SE), 58-118 kg (80.9 + 2.1), and 169-194 cm (177.6 + 1.0),
pectively.

ets

A basal diet (Table 1) planned from commonly available
odstuffs was designed to contribute a total of 40% of calories
m fat when fed in conjunction with 15 g/d of cither placebo
{PO) or fish-oil concentrate (FOC; ROPUFA-50%, containing
% n—3 fatty acids, Hoffmann-La Roche, Nutley, NJI). The
olesterol intake was ~360 mg/d at 11.7 MJ. The nutrient
mposition of these diets was calculated by using the US De-
ment of Agriculture (USDA) Lipid Nutrition Laboratory
od database, derived mainly from data on food composition
m the USDA Handbook no. 8 and by analysis (18). The con-
t of the long-chain (== 20C) and n—3 fatty acids were mini-
ed in the basal diet by excluding fish from the menus whereas
vitamin E intake was minimized by excluding highly fortified
0ods from the diet. A 14-d menu cycle ensured variety and
ceptability of the food provided. No smoking, vitamins, min-
s, or other supplements, or alcohol were permitted during
study. The meals were prepared in the Human Study Facility
the Beltsville Human Nutrition Research Center (BHNRC)
ere the subjects came for breakfast and dinner. On weckdays
carry-out lunch was provided whereas weekend meals were
kaged and taken home on Fridays. Subjects were initially
igned an appropriate caloric intake based on their estimated
d for weight maintenance. Subsequently, body weight was
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TABLE 1
Estimated daily nutrient intake on controlled diets*
Nutrient Placebo Fish oil

Fat (%)t 40+ 0.3 40+03
Carbohydrate (%)t 46 £ 0.7 46 + 0.7
Protein (%)t 16 +0.3 16 +0.3
Cholesterol (mg/d)% 360 + 21 360 + 21
Alpha tocopherol (mg/d, minimum) 22+0.6 22+ 0.6
Total tocopherol {mg/d, minimum) 41 £ 0.8 41+ 0.8

* X £ SE. Average daily intake for a 14-d menu cycle.
T Percent of energy.
FAL11.7 MJ.

maintained by adjusting the total menu intake by 1.7 MJ (400-
keal) increments, Consumption of coffee, tea, and water was
unrestricted.

All subjects were exclusively fed the controlled basal diet from
early January to mid-July for a total of 28 wk divided into three
periods. During period 1 (10 wk) all subjects consumed 15 g
PO/d (seven capsules at breakfast and eight capsules at dinner)
provided as 1-g oil plus I mg all-rac-a-tocopherol per soft-gelatin
capsule (Hoffmann-La Roche). During period 2 (10 wk) all sub-
jects consumed 15 g FOC instead of PO, (seven capsules at
breakfast and eight capsules at dinner) each capsule containing
I mg all-rac-a-tocopherol. During period 3 (8 wk) all subjects
continued to consume FOC capsules but at breakfast also re-
ceived a capsule containing 200 mg all-rac-a-tocopherol. Total
a-tocopherol intake from the diet plus the capsules (PO or FOC)
was a minimum of 22 mg/d.

The PO was a blend of 48% stripped lard, 40% beef taliow
{(Canada Packers, Toronto; hormone-free), and 12% corn oil, 1
g per capsule, stabilized with 1 mg all-rac-a-tocopherol. The
n—3 fatty acid supplement was a 50% concentrate of refined
anchovy oil (ROPUFA-50%). This supplement, as 1 g per soft-
gelatin capsules (containing 1 mg all-rac-a~tocopherol) was
identical in appearance to the PO capsule. Subjects were in-
formed of the sequence of administration of the capsules.

Estimated total daily nutrient intake and fatty acid intake are
presented in Table 1 and Table 2. Composition of the PO and
FOC supplements, determined by capillary gas chromatography
as previously described (19), are shown in Table 3.

Collection of blood and mononuclear blood cells

At the end of each dietary period, 20 mL fasting blood was
coliected from the subjects by venous puncture. The blood was
collected in 10-mkL sterile evacuated tubes to which 500 U hep-
arin (Sigma Chemical Co, St. Louis) had been added under sierile
conditions. The blood was collected between 0630 and 0830
and held at room temperature until being processed at 0900.
The tubes of blood from each subject were emptied into a 50-
mL conical tube (Falcon, Becton Dickinson, Lincoln Park, NJ)
and centrifuged at 1000 X g for 10 min at 20 °C. The plasma
was removed with a sterile transfer pipette (Sarstedt Inc, Newton,
NC) and placed in a 15-mL conical tube. The plasma was re-
centrifuged at 1000 X g for 10 min at 4 °C, removed from
pelleted residual blood cells, and held at 4 °C for ~4 h before
being used as autologous plasma (AP) in the culturing of PBMCs.
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TABLE 2
Estimated daily fatty acid intake on controlled diets*
Fatty acids Placebo Fish o1l
g/dt
Total saturates 33+ 11 29+ 1.1
Palmitic (16:0) 20 £ 0.6 18 £ 0.6
Stearic (18:0) 9+0.3 703
Total monounsaturates 46 + 0.6 42 + 0.6
Oleic (18:1n-9) 44 + 0.6 39 +0.6
Total polyunsaturates 27 £0.6 33+0.6
n—3 Polyunsaturates 2401 10 £ 0.1
Linolenic acid (18:3n—3) 2+0.1 2+0.1
Eicosapentaenoic acid (20:5n—3) 0 5+0.0
Docosahexaenoic acid (22:6n—3}) 0 2200
n—6 Polyunsaturates 25 +0.6 23+ 0.6
Linoleic acid (18:2n-6) 25+ 0.6 23 0.6
* X+ SE.
AL 117 MJ

The packed blood cells were resuspended to original blood vol-
ume with 1X Hanks’ Balanced Salt Solution (HBSS, GIBCO
Laboratories, Grand Island, NY) containing penicillin and
streptomycin (GIBCO) at 100 kU/L and 100 mg/L, respectively.

PBMCs were prepared by gradient centrifugation. Ten mil-
liliters of the resuspended blood cells were placed on 4 mL His-
topaque-1077 (Sigma Chemical) in a 15-mL conical tube. The
tubes were centrifuged at 400 X g for 30 min at 20 °C. Recovered
PBMCs were washed twice with HBSS by centrifugation at 1000
X g for 10 min at 10 °C. After the second centrifugation the
pelleted PBMCs were resuspended in RPMI-1640 tissue-culture
medium (GIBCO) containing (per L} 2.0 mmol L-glutamine
(GIBCO), 100 kU penicillin, and 100 mg streptomycin, referred
to herein as RPMI-1640. Viable PBMCs were determined by
trypan blue exclusion and adjusted to 4 X 10° cells/L in RPMI-
1640,

Lymphocyte mitogenic assay

In vitro cell cultures received, in order, 50 uL of adjusted
PBMCs (2 X 10° celis/well), 50 ul. RPMI-1640 alone (back-
ground) or RPMI-1640 containing ConA (type IV, Sigma
Chemical Co), and 100 uL of RPMI-1640 containing 20% (10%
final concentration) heat-inactivated (56 °C for 30 min) fetal
bovine serum (FBS, GIBCO) or noninactivated AP per well of
96-well microtiter plates. Each cell culture contained a total vol-
ume of 200 mL. Stock solutions of FBS and ConA were por-
tioned and stored at —20 °C before study was begun. Single lots
and uniform storage of all tissue-culture reagents were used
throughout the study.

Triplicate background (without mitogen) cultures were eval-
uated for each cell-culture sample; triplicate test (with ConA)
cultures were likewise evaluated for each dose of ConA tested.
To determine the mitogen dose-response curve, ConA was added
at concentrations of 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and 25.6
pg per culture. The cell cultures were incubated for 72 h at 37
°C in an incubator with 5% CQ, and 95% humidified air.
Twenty-four hours before termination of incubation, 1.0 kBq

[methyl-*H]thymidine (specific activity 248 GBg/mmol; Dupont
NEN Products, Boston) was added to each culture. On comple-
tion of incubation the cells were harvested with a Titertek Cell
Harvester (Skatron Inc, Sterling, VA). The thymidine-labeled
DNA was collected on 12-well filtermats (Skatron). Individual
filter discs were placed in plastic Mini-Poly Vials (Beckman,
Fullerton, CA), 5§ mL Ready Solve HP/b (Beckman) was added
1o each vial, and the samples were counted in a Beckman LS
3801 scintillation counter by using a single-label dpm program
(1 Bq = 1.0 dps).

Fatty acids and a-tocopherol analyses

The fatty acid composition of platelets and the a-tocopherol
composition of plasma, platelets, and erythrocytes were deter-
mined as previously described by other investigators from this
laboratory (20).

Statistics

Individual scintillation counts for each triplicate set of back-
ground (without ConA) and test (with ConA) cultures were an-
alyzed as follows to determine whether any counts should be
rejected as outhiers. For each culture type (AP, FBS), supple-
mentation (PO, FOC, FOC+E), and ConA concentration (0.0,
0.8, 1.6, 3.2, 6.4, 12.8) an analysis-of-variance model was fit for
subject effects. Residuals (deviations of observed counts from
the subjects mean count) for this model were compared with
the SD and the interquartile range. If an absolute value of the
residual was greater than three times the SD or the interquartile
range {center 50% of the data) of the residuals, the corresponding

TABLE 3
Fatty acid composition of placebo and fish-oil supplements
Fatty acid Placebo Fish oif
g/100 g
12:0 0.2 0.1
14:0 2.1 49
16:0 21.8 9.3
16:1n~7 24 6.5
18:0 13.3 1.4
18:1n—9 36.4 5.4
18:2n—6 13.7 1.9
18:3n—3 0.4 1.0
18:4n—3 ND* 4.6
20:10-9 0.4 0.4
20:4n-6 0.2 1.4
20:4n—3 ND 1.1
20:5n—3 ND 30.2
22:5n—3 ND 2.5
22:6n—-3 ND 13.1
Saturates 38.4 16.5
Monounsaturates 42.8 15.7
Polyunsaturates 14.4 63.6
n—6 13.9 3.7
n—3 0.4 52.5
n—3:n-6% 0.03 14.16

* Not detected.
+ Ratio of n—3 to n—6 fatty acids.
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observed count was deleted. Of the 3819 observed counts, 99
were identified as outliers and removed from the triplicate data
set. The mean of the remaining counts for each subject, culture
type, supplementation, and ConA concentration was used in
subsequent analyses.

Analyses were carried out on mean values computed for each
combination of subject, culture type, supplementation, and
ConA concentration. Counts difference (CID) was computed as
the difference between the observed mean count at each ConA
concentration and the mean count at the zero ConA concen-
tration.
¢ Univariate analyses of variance were used to test the effects
of supplementation, ConA, and the interaction of supplemen-
tion by ConA for each culture type. The model used also in-
cluded the effects of subject and a subject-by-supplementation
interaction to be used as the error variance for tests of hypotheses
about supplementation, whereas the residual error variance was
sed for tests of ConA and the supplementation by ConA in-
teraction. The inclusion of two error variances in the model
counted for the greater error variance expected among periods
than would be expected to occur within periods. These two error
riances were used to compute appropriate SEs as required in
lit-plot designs to conduct mean comparisons by using the
ast-significant-difference test (21).

Residuals from this model were tested for outliers, as abave,
d examined to determine if the assumptions of the normality
d homogeneity of variances were reasonable for the parametric
alysis of variance. Residual plots for examining normality and
Levene’s test of homogeneity of variances were used (22). Neither
sumption was reasonable for the variable CD, Fxamination
the residual plot suggested that a log transformation might
rove satisfactory. After logarithmic transformation of CD data,
second examination of the model residuals indicated that the
ansformation had successfully improved the normality as-
fnption. Of the 1060 subjects, culture type, supplementation,
d ConA combination means, nine means (0.85% of total) were
moved as outliers at this step. However the assumption of
mogeneity of variances was still untenable. To account for
e variance heterogeneity, the final analysis of variance was
aghted for the reciprocal of the residual variances for each
iture type, supplementation, and ConA concentration com-
ation. That is, those treatment combinations with the greatest
riance received the smallest weights whereas those with the
allest variance were assigned the largest weights in the analysis
variance (23).

EPA and a-tocopherol profiles of subjects were determined
¢er-each period of supplementation. Mean weight percent of
A (20:5n—3) in platelet membranes increased from 0.2% after
pplementation with PO to 4.1% and 4.2% after supplemen-
ion with FOC and FOCHE, respectively. The ratic of n—3 to
6 PUFAs in platelets increased from 0.08 after supplemen-

ion with PO to 0.35 after FOC and FOC+E. Concentration
#:SE) of a-tocopherol in plasma significantly decreased from
0.71 10 20 £ 0.71 umol/L after supplementation with FOC

d significantly increased to 26.8 + 0.94 gmol/L after supple-
ntation with FOC+E. Similar significant changes of a-to-
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copherol were found in platelets and erythrocytes (data not
shown).

Mitogenic responsiveness to ConA of PBMCs cultured in me-
dium containing either FBS or AP is shown in Figures 1 and 2,
respectively. Activities of cells stimulated with extremely sub-
optimal (0.2 and 0.4 ug) and excess (25.6 ug) concentrations of
ConA are not presented. PBMCs from the subjects after sup-
plementation with FOC showed suppressed blastogenesis when
cultured in medium containing FBS and stimulated with a wide
range of ConA concentrations (Fig 1). The suppressed blasto-
genesis was restored afier supplementation of the subjects with
an additional 200 mg ali-rac-o-tocopherol/d during the third
period (FOC+E).

PBMCs from FOC-compared with PO-supplemented subjects
showed reduced blastogenesis when cultured in medium con-
taining AP and stimulated with concentrations of ConA in excess
(6.4 and 12.8 pg) of that needed to induce maximum mitogenic
responsiveness (Fig 2). The suppressed mitogenic response o
ConA was corrected after supplementation of the subjects with
FOC+E. PBMCs from the subjects after each supplementation
showed equivalent mitogenic responsiveness when cultured in
medium containing AP and stimulated with concentrations of
ConA (0.8, 1.6, and 3.2 ug) that induced optimal blastogenesis.
Mitogenic responsiveness of PBMCs to the complete range of
ConA concentrations was equivalent for cells from subjects after
supplementation with PO or FOC+E,

Regression analysis was used to assess the relation between
log CD (AP and FBS) and plasma a-tocopherol within subjects
because subjects were sampled in both periods. There was a
significant positive relationship (P < 0.001) for both AP and
FBS with plasma a-tocopberol. The regression coefficients were
+3.06 +0.79 and +3.16 £ 0.71 for log CD regressed on plasma
a-tocopherol for AP and FBS, respectively.

Discussion

Subjects in the present study supplemented with FOC for 10
wk showed significantly increased EPA in platelet membranes
but significantly reduced plasma platelet, and erythrocyte a-to-
copherol (data not shown). After continued supplementation
for 8 wk with FOC+E, at 22 times the RDA, then n—3 PUFA
concentration of EPA in platelet membranes remained the same
and the amount of a-tocopherol in plasma, platelets and eryth-
rocytes significantly increased. On the basis of significant con-
centration changes of a-tocopherol in plasma, platelet, and
erythrocyte specimens, we assume that similar changes occurred
in PBMCs. Hatam and Kayden (24) and Meydani et al (25)
observed a two-to-threefold increase of a-tocopherol in plasma
and PBMCs from subjects supplemented with amount not re-
ported and 800 mg vitamin E/d, respectively.

Our finding of suppressed mitogenic responsivencss of PBMCs
stimulated with ConA from FOC-supplemented subjects agrees
with reports describing suppressed blastogenesis of mitogen-
stimulated PBMCs from subjects supplemented with n—3 PUFA
(3-5). Results of our study, however, indicate that the suppres-
sion was associated with a reduced a-tocopherol status. PBMCs
from FOC-supplemented subjects showed suppressed mitogenic
responsiveness to ConA at a wide range of concentrations when
cultured in medium containing FBS but only to ConA in excess
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Counts Difference KBg + SE

0.8 1.8

3.2 6.4 12.8

Concanavalin — A ( ug/200 uL)

FIG 1. Blastogenesis ([*H]thymidine incorporation) of ConA-stimulated PBMCs from subjects after supplementation
with PO (&), FOC (&), or FOC+E (B), cultured in medium containing FBS. Mitogenic responsiveness expressed as
counts difference (stimulated minus unstimulated counts) kBq. X + SE, n = 34-39. Dissimilar letters denote significant
differences (P < 00.05) between values within a ConA concentration by least-significant difference.

of that needed for maximum blastogenesis when cultured in
medium containing AP (Figs I and 2). The mean concentration
of a-tocopherol in standard commercially available FBS is < 1.0
pmol/L (information from Hyclone Laboratories, Salt Lake City)
whereas that in plasma from FOC subjects was 20 + 0.7 umol/
L (x & SE). The suppressed blastogenesis was reversed in PBMCs
from subjects supplemented with additional vitamin E (FOC+E).
Because significantly higher concentrations of a-tocopherol were
achieved in plasma, platelets, and erythrocytes of FOC+E than
of FOC subjects, it is concluded that supplementation with ad-
ditional vitamin E reversed the FOC-induced decline in plasma
vitamin E status. Because the concentrations of fatty acids and
a-tocopherol in FBS remained constant, it is assumed that en-
hanced blastogenesis of PBMCs stimulated with ConA from
FOCHE subjects was related to an increased cellular concentra-
tion of a-tocopherol. This assumption is supported by mitogenic
responsiveness of T lymphocytes to ConA showing a statistically
significant correlation by regression analysis with the rise in
plasma a-tocopherol concentrations.

The dietary amount of vitamin E needed for maximum bias-
togenesis of mitogen-stimulated PBMCs from individuals con-
suming increased amounts of n—3 PUFAs is not established.
The present study and that of Kelly et al (4) may indicate that
it is higher than the current RDA of 10 tocopherol equivalents/
d for aduit males and females (10). Also using in vitro PBMC
cultures supplemented with FBS, Kelly et al (4) demonstrated
only marginally significant reduced blastogenesis of PBMCs
stimulated with ConA from healthy men supplemented with
flaxseed oil plus 200 mg all-rac-a-tocopherol/wk for 8 wk in

addition to that acquired from the basal diet. PBMCs from FOC
subjects of this study, supplemented with approximately half
that amount of all-rac-a-tocopherol per week (105 mg), showed
significantly suppressed blastogenesis of PBMCs stimulated with
ConA. After supplementation with 1505 mg all-rac-a-tocoph-
erol/wk for 8 wk, the subjects (FOC+E) showed restored blas-
togenesis of PBMCs stimulated with ConA {(Fig 1). Information
is not available describing the minimum amount of extra a-
tocopherel needed to reverse the suppressive effects of n—3
PUFAs on blastogenesis of human PBMCs stimulated with
ConA. Bendich et al (26) demonstrated, in rats fed a basal diet
containing 10% stripped lard (vitamin E free) plus increasing
amounts of vitamin E, that the vitamin E required for maximum
blastogenesis of spleen lymphoid cells stimulated with ConA
was more than three times higher (15 vs 50 mg/kg) than that
needed for other measurements of vitamin E adequacy.

In contrast to our findings and those of others (3, 4), Payan
et al (6) and Kremer et al (7) observed increased blastogenesis
of mitogen-stimulated lymphocytes from n—3 PUFA-supple-
mented, medically treated patients with asthma and rtheumatoid
arthritis respectively. The difference in responsiveness observed
by Payan et al (6) may be partially explained by either the drug
usage of medically treated asthmatic patients or the method of
T-lymphocyte isclation before stimulation in vitro with PHA.
They isolated T lymphocytes from PBMCs by the formation of
rosettes with SRBCs. Breitmeyer and Faustman (27) demon-
strated enhanced blastogenesis of purified human T lymphocytes
stimulated with PHA afier isolation by formation of roscttes
with SRBCs.
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Our results indicate that the amount of dietary vitamin E
eeded for maximum blastogenesis in vitro of PBMCs stimulated
ith ConA is elevated with increased dietary intake of n—3
UFAs. Additional studies are needed to determine how much
f an increase in dietary vitamin E is required for optimal im-
une protection by the T-lymphocyte division of the immune
stem in individuals consuming increased amounts of n—3
FAs. Individuals with already impaired T-lymphocyte func-
ons should be aware of a possible need for increased intake of
tamin E during prolonged dietary supplementation with fish
1. It may be important to examine whether vitamin E will be
sneficial in other conditions with suppressed T-lymphocyte
inction. £
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